Contents | Pr | eface | X | |-----|---|-----| | Αŀ | bout the Author | xiv | | 1 | Introduction | 1 | | | 1.1 The Nature of Work | 7 | | | 1.2 Defining Work Systems | 10 | | | 1.3 Types of Occupations | 12 | | | 1.4 Productivity | 15 | | | 1.5 Organization of the Book | 19 | | | | | | Par | rt I Work Systems and How They Work | 25 | | 2 | Manual Work and Worker-Machine Systems | 27 | | | 2.1 Manual Work Systems | 29 | | | 2.2 Worker–Machine Systems | 37 | | | 2.3 Automated Work Systems | 45 | | | 2.4 Determining Worker and Machine Requirements | 46 | | | 2.5 Machine Clusters | 51 | | 3 | Work Flow and Batch Processing | 59 | | | 3.1 Sequential Operations and Work Flow | 60 | | | 3.2 Batch Processing | 64 | | | 3.3 Defects in Sequential Operations and Batch Processing | 69 | | | 3.4 Work Cells and Worker Teams | 71 | | 4 | Manual Assembly Lines | 85 | | | 4.1 Fundamentals of Manual Assembly Lines | 86 | | | • 4.2 Analysis of Single Model Assembly Lines | 91 | | | 4.3 Line Balancing Algorithms | 100 | | | 4.4 Other Considerations in Assembly Line Design | 106 | | | 4.5 Alternative Assembly Systems | 107 | | | in the there is a second | | | vi | Contents | |----|------------| | | COLLECTION | | 5 | Logistics Operations | 113 | |----|---|---------------------------------| | | 5.1 Introduction to Logistics5.2 Transportation Operations5.3 Material Handling | 114
120
126 | | | 5.4 Quantitative Analysis of Material-Handling Operations | 140 | | 6 | Service Operations and Office Work | 153 | | | 6.1 Service Operations6.2 Office Work | 153
162 | | 7 | Projects and Project Management | 133 | | | 7.1 Projects 7.2 Project Management 7.3 Project Scheduling Techniques 7.4 Project Crashing 7.5 Software for Projects | 174
177
179
192
195 | | | t II Methods Engineering and Layout Planning | 205 | | 8 | Introduction to Methods Engineering and Operations Analysis | -7 207 | | | 8.1 Evolution and Scope of Methods Engineering 8.2 How to Apply Methods Engineering 8.3 Basic Data Collection and Analysis Techniques 8.4 Methods Engineering and Automation | 209
210
216
225 | | 9 | Charting and Diagramming Techniques for Operations Analysis | 232 | | | 9.1 Overview of Charting and Diagramming Techniques 9.2 Network Diagrams 9.3 Traditional Industrial Engineering Charting
and Diagramming Techniques | 233
234
235 | | | 9.4 Block Diagrams and Process Maps | 246 | | 10 | Motion Study and Work Design | 259 | | | 10.1 Basic Motion Elements and Work Analysis10.2 Principles of Motion Economy
and Work Design | 260
263 | | 11 | Facility Layout Planning and Design | 203
270 | | | 11.1 Types of Production Plant Layouts11.2 Other Types of Layouts11.3 Systematic Layout Planning | 279
286
289 | | | | Contents | vii | |-----|--|----------|---------------------------------| | Par | t III Time Study and Work Measurement | | 317 | | 12 | Introduction to Work Measurement | | 319 | | | 12.1 Time Standards and How They Are Determined 12.2 Prerequisites for Valid Time Standards 12.3 Allowances in Time Standards 12.4 Accuracy, Precision, and Application Speed Ratio in Work Measurement | | 320
326
331
335 | | 13 | Direct Time Study | | 342 | | | 13.1 Direct Time Study Procedure 13.2 Number of Work Cycles to be Timed 13.3 Performance Rating 13.4 Time Study Equipment | | 343
351
353
356 | | 14 | Predetermined Motion Time Systems | | 368 | | | 14.1 Overview of Predetermined Motion Time Systems 14.2 Methods-Time Measurement (MTM) 14.3 Maynard Operation Sequence Technique (MOST) | | 370
373
382 | | 15 | Standard Data Systems | | 395 | | | 15.1 Using a Standard Data System 15.2 Developing a Standard Data System 15.3 Work Element Classification in Standard Data Systems 15.4 Analysis of Machine-Controlled Element Times 15.5 SDS Advantages and Disadvantages | | 397
401
402
406
413 | | 16 | Work Sampling | | 422 | | | 16.1 How Work Sampling Works16.2 Statistical Basis of Work Sampling16.3 Application Issues in Work Sampling | | 424
425
431 | | 17 | Computerized Work Measurement and Standards Maintenance | | 443 | | | 17.1 Computer Systems for Direct Time Study and Work Sampling 17.2 Computerized Systems Based on Predetermined Motion Times and Standard Data 17.3 Work Measurement Based on Expert Systems 17.4 Maintenance of Time Standards | | 444
450
453
455 | | 18 | The Economics and Applications of Time Standards | | 459 | | | 18.1 Economic Justification of Work Measurement 18.2 Applications of Time Standards and Time Study | | 460
469 | | 19 | Learning Curves | | 483 | | | 19.1 Learning Curve Theory19.2 Why the Learning Curve Occurs | | 484
493 | | _ | | | | |----|-----|----|----| | Co | nt | Δn | TC | | ~~ | 716 | ~r | | viii | | ~ | | |-----|--|--| | | 19.3 Determining the Learning Rate | 495 | | | 19.4 Factors Affecting the Learning Curve | 497 | | | 19.5 Learning Curve Applications | 504 | | | 19.6 Time Standards Versus the Learning Curve | 504 | | Par | t IV New Approaches in Process Improvement | | | | Work Management | 511 | | 20 | Lean Production | 513 | | | 20.1 Elimination of Waste | 516 | | | 20.2 Just-in-Time Production | 518 | | | 20.3 Autonomation | 526 | | | 20.4 Worker Involvement | 531 | | 21 | Six Sigma and Other Quality Programs | 540 | | | 21.1 Overview and Statistical Basis of Six Sigma | 541 | | | 21.2 The Six Sigma DMAIC Procedure | 545 | | | 21.3 Other Quality Programs | 554 | | | Appendix 21A: Sigma Levels, Defects per Million, | | | | Fraction Defect Rate, and Yield in Six Sigma | 556 | | | | $=_{\gamma}^{\mathbf{v}}$. | | Pai | t V Ergonomics and Human Factors in the Workplace | 563 | | 22 | Introduction to Ergonomics and Human Factors | 565 | | | 22.1 Overview of Ergonomics | 568 | | | 22.2 Human-Machine Systems | 571 | | | 22.3 Topic Areas in Ergonomics | 575 | | 23 | Physical Ergonomics: Work Physiology and Anthropometry | 580 | | | 23.1 Human Physiology | 581 | | | 23.2 Muscular Effort and Work Physiology | 587 | | | 23.3 Anthropometry | 598 | | 24 | Cognitive Ergonomics: The Human Sensory System | | | | and Information Processing | | | | and invination i focessing | 609 | | | 24.1 The Human Sensory System | 610 | | | 24.1 The Human Sensory System 24.2 Perception | 610
621 | | | 24.1 The Human Sensory System24.2 Perception24.3 Attention Resources | 610
621
623 | | | 24.1 The Human Sensory System 24.2 Perception 24.3 Attention Resources 24.4 Memory | 610
621
623
626 | | | 24.1 The Human Sensory System 24.2 Perception 24.3 Attention Resources 24.4 Memory 24.5 Response Selection and Execution | 610
621
623
626
629 | | | 24.1 The Human Sensory System 24.2 Perception 24.3 Attention Resources 24.4 Memory 24.5 Response Selection and Execution 24.6 Common Cognitive Tasks | 610
621
623
626
629
633 | | | 24.1 The Human Sensory System 24.2 Perception 24.3 Attention Resources 24.4 Memory 24.5 Response Selection and Execution | 610
621
623
626
629 | | | | Contents | ix | |-----|---|----------|-------------| | 25 | The Physical Work Environment | (| 645 | | | 25.1 The Visual Environment and Lighting | (| 645 | | | 25.2 The Auditory Environment and Noise | (| 654 | | | 25.3 Climate Control in the Work Environment | (| 660 | | 26 | Occupational Safety and Health | (| 668 | | | 26.1 Industrial Accidents and Injuries | (| 669 | | | 26.2 Occupational Disorders and Diseases | | 676 | | | 26.3 Occupational Safety Health Laws and Agencies | | 676 | | | 26.4 Safety and Health Performance Metrics | (| 680 | | Par | t VI Traditional Topics in Work Management | 6 | 685 | | 27 | Work Organization | • | 687 | | | 27.1 Organization Principles | | 688 | | | 27.2 Organization Structures | | 695 | | 28 | Worker Motivation and the Social Organization at Work | , | 707 | | | 28.1 Motivation and Job Satisfaction | , | 707 | | | 28.2 The Social Organization at Work | • | 714 | | 29 | Job Evaluation and Performance Appraisal | | 719 | | | 29.1 Job Evaluation | | 720 | | | 29.2 Performance Appraisal | • | 732 | | 30 | Compensation Systems | , | 735 | | | 30.1 Overview of Compensation Systems | | 736 | | | 30.2 Time-Based Pay Systems | | 738 | | | 30.3 Direct Wage Incentive Systems | | 741 | | | 30.4 Gain Sharing | | 754
758 | | | 30.5 Profit Sharing | | 150 | | | Appendix: Statistical Tables | | 765 | | | A1 Standard Normal Distribution | | 765 | | | A2 Student t Distribution | | 766 | | | Index | | 7 67 | | | | | | | | • | | | | | | | |